x^2+3x=16384

Simple and best practice solution for x^2+3x=16384 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+3x=16384 equation:



x^2+3x=16384
We move all terms to the left:
x^2+3x-(16384)=0
a = 1; b = 3; c = -16384;
Δ = b2-4ac
Δ = 32-4·1·(-16384)
Δ = 65545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{65545}}{2*1}=\frac{-3-\sqrt{65545}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{65545}}{2*1}=\frac{-3+\sqrt{65545}}{2} $

See similar equations:

| X=1,24+0,248x | | 5x+4-5x=4 | | 20=(0.0178x^2)+1.5x+16 | | (x+3)(x−4)=0(x+3)(x−4)=0 | | 6=x10 | | 20(17.8+-1.7y)+34y=356 | | 100x+10=10x+110 | | 3x+24+4x+18=90 | | 35x-30=15x+10 | | x-8=(-25) | | x+5=(-10) | | 4(2x+1)=5x+8 | | x-12=(-5) | | 10e-51=2e+45 | | -8u=3=2u-17 | | 5(r-1)=r-1 | | 27x-46=9x+10 | | 20(b-1)=8b+7 | | 3.x/3+5/2=-3/2 | | 25x-10=10x+100 | | 4x-13=12x-3 | | a²-12+35=0 | | (x=8/3=8 | | 3x-41=65 | | Z-(0.35z)=7 | | (8x-4)(8x-4)=64x^2-64x+16 | | 6x²+9x=0 | | x(2x+3)-4(2x+3)=0 | | 9x^2=(x^2+x-5)(√(3x+1)-1)^2 | | 10x^2-14x-9=0 | | 75+(2x+5)=180° | | 2m-3=9-m |

Equations solver categories